

Neurofeedback

- EEG – gesteuertes Feedback –

und Tinnitus

Elmar Weiler and Klaus Brill

NeuroNet GmbH, St. Wendel, Germany

www.neuronet.de

Was ist Neurofeedback?

Historie

Die Ursprünge des *Neurofeedback* gehen zurück auf zwei voneinander unabhängige wissenschaftliche Untersuchungen.

- Alpha Rhythmus
- SMR Rhythmus (sensorimotor Rhythm)

Kortexreizversuchen schädeltrepanierter Kranker gelang ihm schließlich am

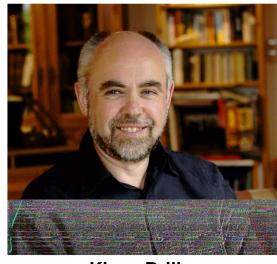
06. Juli 1924

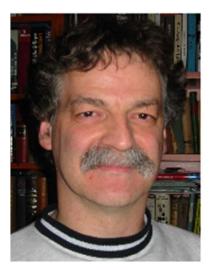
die Entdeckung des Elektroenkephalogramm

Hans Berger (1873-1941)

In den 60-iger Jahren gelang es Prof. J. Kamiya von der Uni. Chicago, als erstem Forscher, Versuchspersonen durch EEG-Biofeedback in die Lage zu versetzen, willentlich die Aktivität ihrer Alpha-Hirnwellen (8-11Hz) zu erhöhen.

Joe Kamiya


In den 80-iger Jahren setzte Dr. E. Penniston ein Alpha / Theta Training zur Behandlung von Suchtpatienten ein.



In den 90-iger Jahren berichteten Brill, Tachiki und Weiler erstmals über den erfolgreichen Einsatz von Neurofeedback (EEG – Biofeedback) bei der Behandlung von Tinnituspatienten. Die im Rahmen von gemeinsamen Forschungsprojekten gemachten Entdeckungen beeinflussten ganz wesentlich die Entwicklung des Neurofeedback in den USA:

- Durchführung der Neurofeedback Therapie basierend auf QEEG-Daten
- •Einführung der visuellen Stimulation: Neurofeedback u. Tinnitus

Klaus Brill Ken Tachiki

Elmar Weiler

Historie: SMR

In den 60-iger Jahren untersuchte Prof. B. Sterman an der UCLA (Universität California Los Angeles) Hirnfunktion und Verhalten. Er zeigte, daß es einfacher für Katzen ist ihr Hirnwellenmuster (SMR12-15 Hz) zu ändern als ihr Verhalten. Im Rahmen eines USAF – Projektes konnte der anti-konvulsive Effekt des **SMR** Rhythmus beobachtet werden. Diese Eigenschaft wurde in der Tat von verschiedenen Forschungsgruppen (inkl. Kehl-Kork) nachgewiesen.

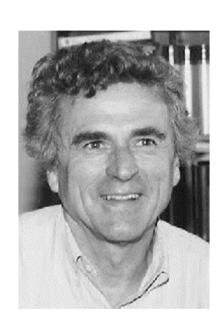
Barry Stermann

Historie: SMR

In den 60-iger Jahren untersuchte Prof. B. Sterman an der UCLA (Universität California Los Angeles) Hirnfunktion und Verhalten. Er zeigte, daß es einfacher für Katzen ist ihr Hirnwellenmuster (SMR12-15 Hz) zu ändern als ihr Verhalten. Im Rahmen eines USAF – Projektes konnte der anti-konvulsive Effekt des **SMR** Rhythmus beobachtet werden. Diese Eigenschaft wurde in der Tat von verschiedenen Forschungsgruppen (inkl. Kehl-Kork) nachgewiesen.

Barry Stermann

In den 90-iger Jahren beschrieben Prof. J. Lubar et al den erfolgreichen Einsatz von


SMR

bei dem Aufmerksamkeitsdefizitsyndrom (ADS).

In Europa hat sich insbesondere Herr Prof. N. Birbaumer von der Universität Tübingen um das **Neurofeedback** verdient gemacht. Für seine wissenschaftlichen Arbeiten erhielt er 1995 den höchstdotierten deutschen Forschungspreis (Leibnizpreis).

Methodik

Quantitative EEG

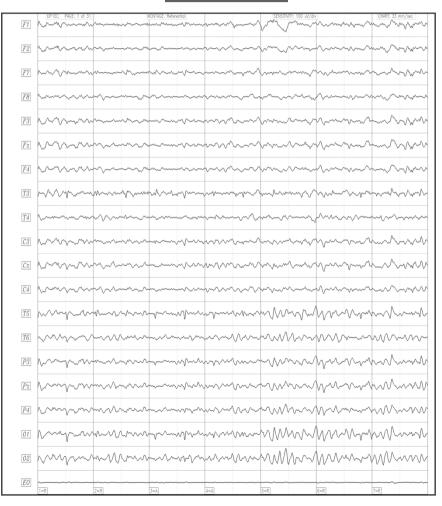
Neurofeedback

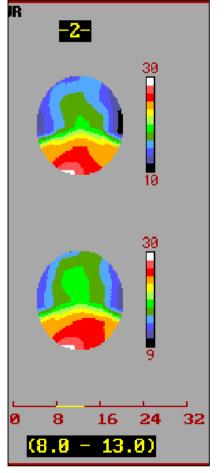
• Tinnitus Questonnaire: Goebel and Hiller

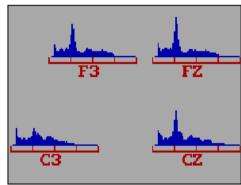
Standard!

1. Computer gestützte EEG – Analyse ist

zwingende Vorraussetzung für

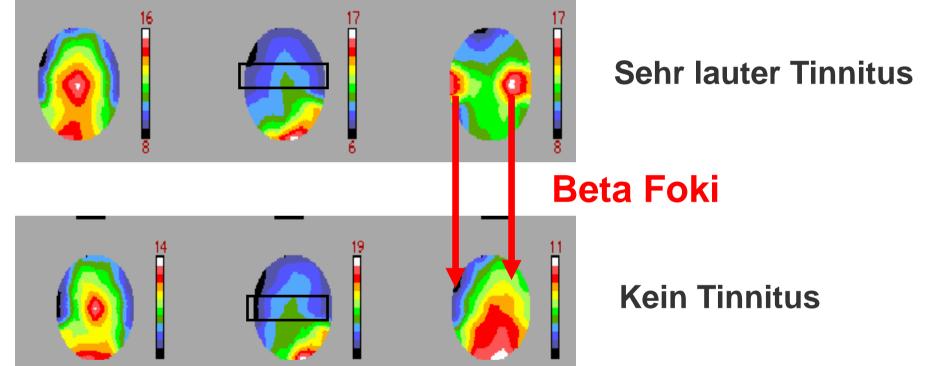

2. EEG – gesteuertes Feedback (Neurofeedback)


Ausgangs – Information: ROH – EEG


ROH EEG

Brainmap

Powerspektrum



Numerik Statistik

Brainmap: Tinnitus

Delta-Theta

(2.0 - 7.0)

16 24 32

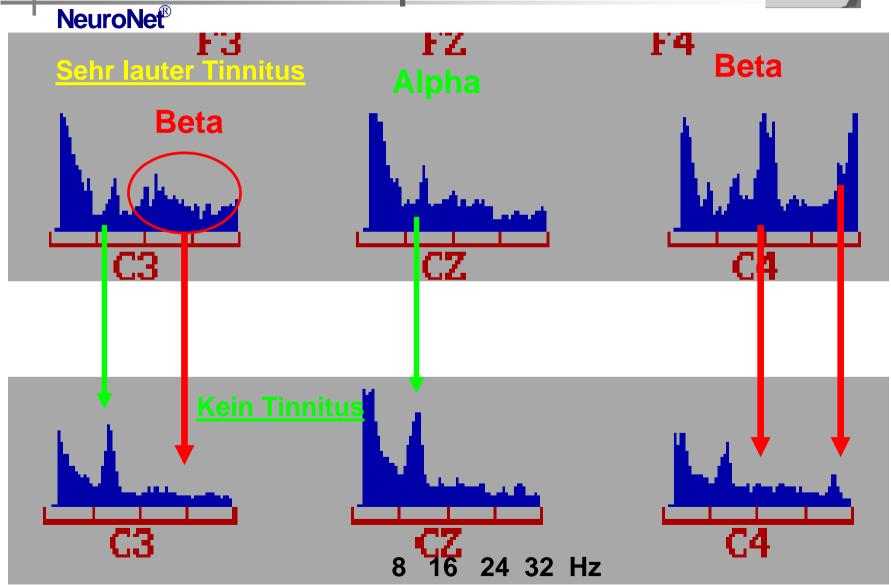
<u>Alpha</u>

(8.0 - 13.0)

16 24

32

Beta


(14.0 - 21.0)

16 24

Powerspektrum: Tinnitus

Was ist Biofeedback?

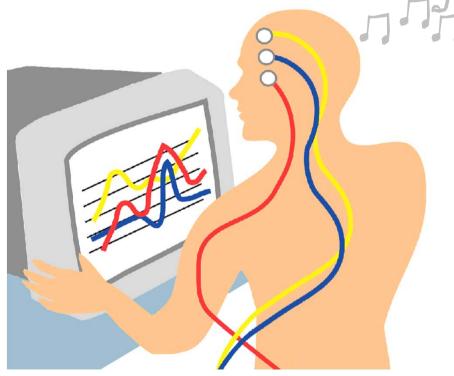
- Bei der Biofeedbackbehandlung werden k\u00f6rperliche Funktionen kontinuierlich zur\u00fcckgemeldet.
- Positive (gewünschte) Veränderungen dieser
 Körperfunktionen werden verstärkt, so dass die
 Patienten lernen, die Körperfunktionen zu beeinflussen.
- Hauptziel: Entwicklung von Selbstkontrolle über körperliche Vorgänge.

Welche Körperfunktionen sind durch Biofeedback beeinflussbar?

- Muskelaktivität
- Blutdruck
- Haut- und Körpertemperatur
- Schweißdrüsenaktivität (als Maß für die allg. Erregung)
- Periphere Durchblutung u. Durchmesser von Blutgefäßen
- Herzrate
- Elektrophysiologische Prozesse des Gehirns

Neurofeedback

Was ist Neurofeedback?



• Neurofeedback: Patient erlernt die Fähigkeit seine Hirnwellenmuster zu kontrollieren / normalisieren.

Neurofeedback

Bildschirm-Animation und oder akustisches Feedback

► 60 - 120 Minuten pro Sitzung

Monitor Display

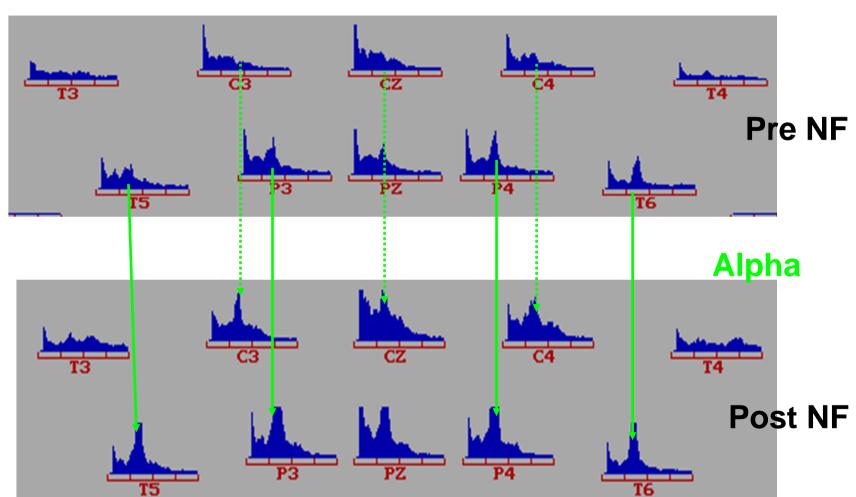
Neurofeedback: Verlaufsprofil

Ergebnisse: Beispiel

Patient: männlich, 62 Jahre alt

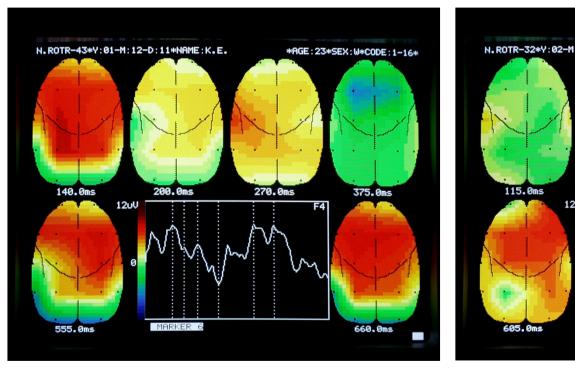
Tinnitus: chronisch

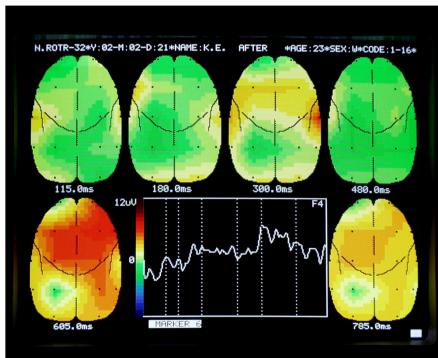
Dauer: 31 Monate


Therapie: Neurofeedback (Alpha-Training)

Dauer: 2 Wochen

Sitzung: 60 – 90 Minuten





Das nächste Bild zeigt die mittels vestibulär evozierter Potentiale nachzuweisenden durch Neurofeedback erzielten Veränderungen bei einem Tinnituspatienten.

In Zusammenarbeit mit Herrn Dr. D. Schneider Univ. Würzburg

Ergebnisse:

Rotation	Mean Peak Latencies (msec)							
	Wave I	Wave II	Wave III	Wave IV	Wave V	Wave VI		
Prä -NF Data								
Right	85	175	250	415	535	745		
Left	70	155	305	415	540	725		
Control	77 ± 10	182 ± 9	336 ± 18	476 ± 16	632 ± 19	802 ± 19		
Post – NF Data (1 Wo.)								
Right	90	185	325	540	675	815		
Left	110	235	325	460	555	805		
Control	77 ± 10	182 ± 9	$\textbf{336} \pm \textbf{18}$	476 ± 16	$\textbf{632} \pm \textbf{19}$	802 ± 19		
Post- NF Data (1Jahr)								
Right	85	245	290	485	615	795		
Left	90	235	280	485	645	775		
Control	77 ± 10	182 ± 9	336 ± 18	476 ± 16	632 ± 19	802 ± 19		

Ergebnisse:

	Prä NF	Post NF			Prä NF	Post NF
Emotionale Belastung (E)	8	5	leichtgradig:	0 bis 30		XXXX
Kognitive Belastung (C)	7	4	mittelgradig:	31 bis 46	XXXX	
Psychische Belastung (C +E)	15	9	schwergradig	47 bis 59		
Penetranz des Tinnitus (I)	9	3	schwerstgradig:	60 bis 84		
Hörprobleme (A)	7	1				
Schlafstörungen (SI)	3	0	kompensiert	bis 61	уууу	уууу
Somatische Beschwerden (So)	0	0	dekompensiert	ab 62		
Gesamtscore	34	13				

Ergebnisse : 25 Patienten

	Vor Beginn der Therapie	Nach Beendigung des Neurofeedbacks	Signifikanz
Emotionale Belastung (E)	13,8 ± 1,1	11,2 ± 1,2	p<0.0007
Kognitive Belastung (C)	$\textbf{9,4} \pm \textbf{0,8}$	$\textbf{8,0} \pm \textbf{0,9}$	p<0.02
Psychische Belastung (C +E)	23,2 ± 1,8	19,2 ± 2,0	p<0.002
Penetranz des Tinnitus (I)	$\textbf{12,4} \pm \textbf{0,7}$	$\textbf{10,5} \pm \textbf{0,7}$	p<0.0006
Hörprobleme (A)	$\textbf{4,1} \pm \textbf{0,9}$	$\textbf{3,8} \pm \textbf{0,8}$	p=N.S.
Schlafstörungen (SI)	$\textbf{3,9} \pm \textbf{0,6}$	$\textbf{3,2} \pm \textbf{0,6}$	p<0.04
Somatische Beschwerden (So)	$\textbf{2,2} \pm \textbf{0,4}$	$\textbf{1,9} \pm \textbf{0,4}$	p=N.S.
Gesamtscore	47,0 ± 3,7	39,7 ± 3,8	p<0.001

	PMFT Weiler & Brill	Neurofeedback Weiler & Brill	Alpha Feedback Schenk	Alpha Feedback Gosepath et al
Emotionale Belastung (E)	P<0,005	p<0,0007	P<0,001	?
Kognitive Belastung (C)	N.S.	p<0,02	P<0,001	?
Psychische Belastung (C +E)	P<0,01	p<0,002	P<0,001	?
Penetranz des Tinnitus (I)	P<0,004	p<0,0006	P<0,001	?
Hörprobleme (A)	N.S	N.S.	P<0,002	?
Schlafstörungen (SI)	N.S.	p<0,04	P<0,02	?
Somatische Beschwerden (So)	N.S.	N.S.	P<0,009	?
Gesamtscore	P<0,01	p<0,001	P<0,001	Signifikante Verbesserung des TTS

Zusammenfassung

 Neurofeedback ist ein wirksames therapeutisches Konzept zur Behandlung des Tinnitus.

 Neurofeedback induziert stabile Änderungen der EEG – Signatur.